Guiding Question: How can we engineer Hydropower to maximize the amount of power generated?

Learning Goal: Engineer a watermill that generates the most power.

Agenda

- 1) Finish Alternative energy sort
- 2) Introduction to hydropower
- 2) Hydropower Engineering
- 3) Exit Ticket

Words of the day Hydropower Efficient

Hydropower
Hydropower is electricity generated using the energy of moving water.

WOD

Efficient

How much Energy from the falling water is NOT transfer to work.

Energy from Falling Work done by the water (Gravitational > System System

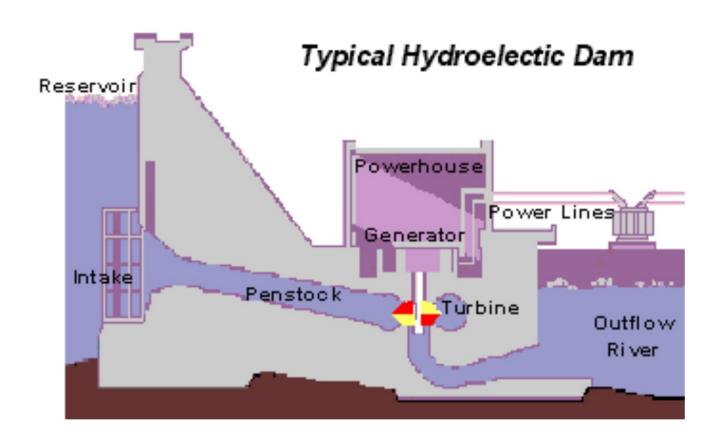
Energy Source Pros and Cons

Cons -	Source	Pros +

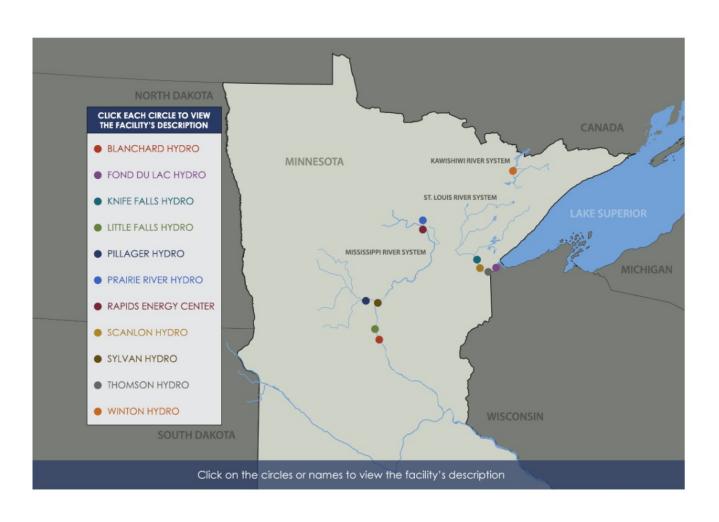
H₂O Solutions: Hydroelectric Power Project

You are working for H_2O Solutions, an engineering design firm that works mostly with waterwheels and water energy! Your city wants to use hydropower instead of coal to make energy because they are worried about air pollution. The city hired you to design an efficient watermill. The firm (your class) split into several engineering teams (student groups) so each team can design and test a slightly different design. You will calculate power and work by measuring force, distance and time for your waterwheel. Then, H_2O Solutions will present the most efficient design to the city.

1. Materials:
2. Procedure:
3. Design Sketch: (use the back of this paper if needed)
4. Calculate the work and power of your waterwheel: Work = force x distance Power = Work ÷ time
5. Questions: What is hydropower?
How does hydropower work?
Why do you think your team's design will be efficient?



Socrative Hydropower TF SOC-20185817


How does a Dam work?

Examples of hydropower in Minnesota

A more simple hydropower design

Materials Available

Your Fin

- index cards
- straws
- toothpicks
- popsicle sticks

Water-Proofing Materials

- aluminum foil
- plastic wrap
- Wax paper

H₂O Solutions: Hydroelectric Power Project

You are working for H₂O Solutions, an engineering design firm that works mostly with waterwheels and water energy! Your city wants to use hydropower instead of coal to make energy because they are worried about air pollution. The city hired *you* to design an efficient watermill. The firm (your class) split into several engineering teams (student groups) so each team can design and test a slightly different design. You will calculate power and work by measuring force, distance and time for your waterwheel. Then, H₂O Solutions will present the most efficient design to the city.

1. Materials:

List the materials YOU used

2. Procedure:

Describe in a list of steps You used to make the fins

3. **Design Sketch:** (use the back of this paper if needed)

4. Calculate the work and power of your waterwheel:

Work = force x distance

Power = Work \div time

5. Questions:

What is hydropower?

How does hydropower work?

Why do you think your team's design will be efficient?